Search results for "Regge calculus"
showing 8 items of 8 documents
Simplicial Quantum Gravity on a Randomly Triangulated Sphere
1999
We study 2D quantum gravity on spherical topologies employing the Regge calculus approach with the dl/l measure. Instead of the normally used fixed non-regular triangulation we study random triangulations which are generated by the standard Voronoi-Delaunay procedure. For each system size we average the results over four different realizations of the random lattices. We compare both types of triangulations quantitatively and investigate how the difference in the expectation value of the squared curvature, $R^2$, for fixed and random triangulations depends on the lattice size and the surface area A. We try to measure the string susceptibility exponents through finite-size scaling analyses of…
Phase space coordinates and the Hamiltonian constraint of Regge calculus.
1994
We suggest that the phase space of Regge calculus is spanned by the areas and the deficit angles corresponding to the two-simplexes on the spacelike hypersurface of simplicial spacetime. Our proposal is based on a slight modification of the Ashtekar formulation of canonical gravity. In terms of these phase space coordinates we write an equation which we suggest to be a simplicial version of the Hamiltonian constraint of canonical gravity.
The Ising transition in 2D simplicial quantum gravity - can Regge calculus be right?
1995
We report a high statistics simulation of Ising spins coupled to 2D quantum gravity in the Regge calculus approach using triangulated tori with up to $512^2$ vertices. For the constant area ensemble and the $dl/l$ functional measure we definitively can exclude the critical exponents of the Ising phase transition as predicted for dynamically triangulated surfaces. We rather find clear evidence that the critical exponents agree with the Onsager values for static regular lattices, independent of the coupling strength of an $R^2$ interaction term. For exploratory simulations using the lattice version of the Misner measure the situation is less clear.
Variation of Area Variables in Regge Calculus
1998
We consider the possibility to use the areas of two-simplexes, instead of lengths of edges, as the dynamical variables of Regge calculus. We show that if the action of Regge calculus is varied with respect to the areas of two-simplexes, and appropriate constraints are imposed between the variations, the Einstein-Regge equations are recovered.
Fixed versus random triangulations in 2D Regge calculus
1997
Abstract We study 2D quantum gravity on spherical topologies using the Regge calculus approach with the dl l measure. Instead of a fixed non-regular triangulation which has been used before, we study for each system size four different random triangulations, which are obtained according to the standard Voronoi-Delaunay procedure. We compare both approaches quantitatively and show that the difference in the expectation value of R2 between the fixed and the random triangulation depends on the lattice size and the surface area A. We also try again to measure the string susceptibility exponents through a finite-size scaling Ansatz in the expectation value of an added R2 interaction term in an a…
Z2-Regge versus standard Regge calculus in two dimensions
1999
We consider two versions of quantum Regge calculus: the standard Regge calculus where the quadratic link lengths of the simplicial manifold vary continuously and the ${Z}_{2}$ Regge model where they are restricted to two possible values. The goal is to determine whether the computationally more easily accessible ${Z}_{2}$ model still retains the universal characteristics of standard Regge theory in two dimensions. In order to compare observables such as the average curvature or Liouville field susceptibility, we use in both models the same functional integration measure, which is chosen to render the ${Z}_{2}$ Regge model particularly simple. Expectation values are computed numerically and …
Standard and Z2-Regge theory in two dimensions
1998
Abstract We qualitatively compare two versions of quantum Regge calculus by means of Monte Carlo simulations. In Standard Regge Calculus the quadratic link lengths of the triangulation vary continuously, whereas in the Z2-Regge Model they are restricted to two possible values. The goal is to determine whether the computationally more easily accessible Z2 model retains the characteristics of standard Regge theory.
Constraints on Area Variables in Regge Calculus
2000
We describe a general method of obtaining the constraints between area variables in one approach to area Regge calculus, and illustrate it with a simple example. The simplicial complex is the simplest tessellation of the 4-sphere. The number of independent constraints on the variations of the triangle areas is shown to equal the difference between the numbers of triangles and edges, and a general method of choosing independent constraints is described. The constraints chosen by using our method are shown to imply the Regge equations of motion in our example.